a) $\sqrt[2]{(3 - \sqrt[2]{10})²}$
= |3 - $\sqrt[2]{10}$|
= -(3 - $\sqrt[2]{10}$)
= $\sqrt[2]{10}$ - 3
b) $\sqrt[2]{8 - 2\sqrt[2]{15}}$ + $\sqrt[2]{3}$
= $\sqrt[2]{5 - 2\sqrt[2]{15} + 3}$ + $\sqrt[2]{3}$
= $\sqrt[2]{(\sqrt[2]{5} - \sqrt[2]{3})²}$ + $\sqrt[2]{3}$
= |$\sqrt[2]{5}$ - $\sqrt[2]{3}$| + $\sqrt[2]{3}$
= $\sqrt[2]{5}$ - $\sqrt[2]{3}$ + $\sqrt[2]{3}$
= $\sqrt[2]{5}$
c) $\frac{5 + \sqrt[2]{5}}{2\sqrt[2]{5}}$
= $\frac{\sqrt[2]{5}.(\sqrt[2]{5} + 1)}{2\sqrt[2]{5}}$
= $\frac{\sqrt[2]{5} + 1}{2}$