Đáp án:
B= x2018−2017.x2017+2017.x2016−...+2017.x2+xx2018−2017.x2017+2017.x2016−...+2017.x2+x
⇒ x.B+B=x2018−2017.x2017+2017.x2016−...+2017.x2+x+x2017−2017.x2016+...+2017x+1x2018−2017.x2017+2017.x2016−...+2017.x2+x+x2017−2017.x2016+...+2017x+1
⇔ B.( x+1)= x2018−2016.x2017+2018x+1x2018−2016.x2017+2018x+1
⇔ B= x2018−2016.x2017+2018x+1x+1x2018−2016.x2017+2018x+1x+1
Bài 2:
a, $(3x-5)^{2006} + (y² -1)^{2008} + (x-z)^{2020} = 0$
Vì (3x−5)2006≥0(3x−5)2006≥0
(y²−1)2008≥0(y²−1)2008≥0
(x−z)2020≥0(x−z)2020≥0
⇒ (3x−5)2006+(y²−1)2008+(x−z)2020≥0(3x−5)2006+(y²−1)2008+(x−z)2020≥0
⇒ Để phương trình thỏa mãn thì
(3x−5)2006=0(3x−5)2006=0⇔ 3x−5=03x−5=0⇔ x=53x=53
(y²−1)2008=0(y²−1)2008=0⇔y²−1=0y²−1=0⇔ y²=1y²=1⇔ y=±1y=±1
(x−z)2020=0(x−z)2020=0⇔ x−z=0x−z=0⇔ z=x=53z=x=53
b, | x-1|+| y+3|+| x²+xz|= 0
Vì | x-1|≥ 0
| y+3|≥ 0
| x²+xz|≥ 0
⇒| x-1|+| y+3|+| x²+xz| ≥ 0
Do đó để phương trình thõa mãn thì:
| x-1|= 0⇔ x-1= 0⇔ x= 1
| y+3|= 0⇔ y+3= 0⇔ y= -3
| x²+xz|= 0⇔ x²+xz= 0⇔ 1+z= 0⇔ z= -1
Vậy x= 1; y= -3; z= -1
c, (2x−1)2020+(y−5)2020+|x+y−z|=0(2x−1)2020+(y−5)2020+|x+y−z|=0
Giải thích như trên
⇒ 2x−1=02x−1=0 ⇔ x=0,5x=0,5
y−5=0y−5=0⇔ y=5y=5
x+y−z=0x+y−z=0⇔ 0,5+5−z=00,5+5−z=0 ⇔z=5,5z=5,5
Bài 3:
a, ||x+3|- 8 | = 20 - |x+3|
Th1: |x+3|- 8= 20 - |x+3|
⇔ 2.|x+3|= 28
⇔ |x+3|= 14
⇔ [x+3=14x+3=−14[x+3=14x+3=−14
⇔ [x=11x=−17[x=11x=−17
Th2: |x+3|- 8= -20 + |x+3|
⇔ 0= -12 ( vô lí)
b, x−12009x−12009+x−22008x−22008= x−32007x−32007+x−42006x−42006
⇔ x−12009x−12009-1+x−22008x−22008-1= x−32007x−32007-1+x−42006x−42006-1
⇔ x−20102009x−20102009+x−20102008x−20102008= x−20102007x−20102007+x−20102006x−20102006
⇔ (x−2010)(x−2010).( 1200912009+1200812008-1200712007-1200612006)= 0
⇔ x-2010= 0
⇔ x= 2010
Giải thích các bước giải: