Đáp án đúng: B
Phương pháp giải:
+) Sử dụng công thức: \(\sqrt {{A^2}B} = \left| A \right|\sqrt B = \left\{ \begin{array}{l}A\sqrt B \,\,\,khi\,\,\,A \ge 0\\ - A\sqrt B \,\,\,khi\,\,\,A < 0\end{array} \right.,\,\,B \ge 0.\)
+) \(\sqrt A .\sqrt B = \sqrt {AB} \) với \(A \ge 0,\,\,B \ge 0.\)
+) \(\sqrt {\dfrac{A}{B}} = \dfrac{{\sqrt A }}{{\sqrt B }}\) với \(A \ge 0,\,\,B > 0.\)
+) Sử dụng công thức trục căn thức ở mẫu: \(\dfrac{1}{{\sqrt A - \sqrt B }} = \dfrac{{\sqrt A + \sqrt B }}{{A - B}}\,\,\,\left( {A \ge 0,\,\,B \ge 0,\,\,A \ne B} \right)\) và \(\dfrac{1}{{A + \sqrt B }} = \dfrac{{A - \sqrt B }}{{{A^2} - B}}\) với \(B \ge 0,\,\,{A^2} \ne B.\)
+) Sử dụng công thức hằng đẳng thức ở mẫu: \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\ - A\,\,\,khi\,\,\,A < 0\end{array} \right..\) Giải chi tiết:\(\begin{array}{l}B = \sqrt {4 + 2\sqrt 3 } + \sqrt {4 - 2\sqrt 3 } \\\,\,\,\,\, = \sqrt {{{\left( {\sqrt 3 } \right)}^2} + 2\sqrt 3 + 1} + \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 2\sqrt 3 + 1} \\\,\,\,\,\, = \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \\\,\,\,\,\, = \left| {\sqrt 3 + 1} \right| + \left| {\sqrt 3 - 1} \right|\\\,\,\,\,\, = \sqrt 3 + 1 + \sqrt 3 - 1\,\,\,\left( {do\,\,\,\sqrt 3 - 1 > 0} \right)\\\,\,\,\,\, = 2\sqrt 3 .\end{array}\)
Chọn B.