Đáp án:
Giải thích các bước giải:
a) Ta có:
x√x−1√x−1+√x=(√x−1)(x+√x+1)√x−1+√x=x+√x+1+√x=x+2√x+1xx−1x−1+x=(x−1)(x+x+1)x−1+x=x+x+1+x=x+2x+1=(√x+1)2(x+1)2
x√x+1√x+1−√x=(√x+1)(x−√x+1)√x+1−√x=x−√x+1−√x=x−2√x+1xx+1x+1−x=(x+1)(x−x+1)x+1−x=x−x+1−x=x−2x+1=(√x−1)2(x−1)2
⇒ (x√x−1√x−1+√x)(x√x+1√x+1−√x)=(√x+1)2(√x−1)2(xx−1x−1+x)(xx+1x+1−x)=(x+1)2(x−1)2
=(x−1)2=(1−x)2=(x−1)2=(1−x)2
⇒B=√x1+x