Đáp án:
`1)` `A=2`
`2)` `B= 2`
Giải thích các bước giải:
`1)` `A=(\sqrt{\sqrt{5}+3}-\sqrt{3-\sqrt{5}})^2`
`=\sqrt{5}+3-2.\sqrt{(\sqrt{5}+3).(3-\sqrt{5})}+3-\sqrt{5}`
`=\sqrt{5}-\sqrt{5}+3+3-2\sqrt{3^2-(\sqrt{5})^2}`
`=6-2.\sqrt{4}=6-2.2=2`
Vậy: `A=(\sqrt{\sqrt{5}+3}-\sqrt{3-\sqrt{5}})^2=2`
$\\$
`2)` `B={3+2\sqrt{3}}/\sqrt{3}-1/{\sqrt{3}-\sqrt{2}}+{2+\sqrt{2}}/{\sqrt{2}+1}`
`={\sqrt{3}.(\sqrt{3}+2)}/\sqrt{3}-{\sqrt{3}+\sqrt{2}}/{(\sqrt{3}-\sqrt{2}).(\sqrt{3}+\sqrt{2})}+{\sqrt{2}.(\sqrt{2}+1)}/{\sqrt{2}+1}`
`=\sqrt{3}+2-{\sqrt{3}+\sqrt{2}}/{3-2}+\sqrt{2}`
`=\sqrt{3}+2-(\sqrt{3}+\sqrt{2})+\sqrt{2}`
`=\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}+2=2`
Vậy: `B={3+2\sqrt{3}}/\sqrt{3}-1/{\sqrt{3}-\sqrt{2}}+{2+\sqrt{2}}/{\sqrt{2}+1}=2`