Đáp án:
Giải thích các bước giải:
a) Xét ΔDBFΔDBF và ΔFED:ΔFED:
DF:cạnh chung
ˆBDF=ˆEFDBDF^=EFD^(AB//EF)
ˆBFD=ˆEDFBFD^=EDF^(DE//BC)
=> ΔBDF=ΔEFD(g−c−g)ΔBDF=ΔEFD(g−c−g)
b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)
Ta có: ˆDAE+ˆAED+ˆEDA=180oDAE^+AED^+EDA^=180o (Tổng 3 góc trong 1 tam giác)
Lại có: ˆAED+ˆDEF+ˆFEC=180oAED^+DEF^+FEC^=180o
Mà ˆDEF=ˆEDADEF^=EDA^(AB//EF)
=>ˆDAE=ˆFECDAE^=FEC^
Xét ΔDAEΔDAE và ΔFEC:ΔFEC:
DA=FE(=BD)
ˆDAE=ˆEFC(=ˆDBF)DAE^=EFC^(=DBF^)
ˆDAE=ˆFECDAE^=FEC^ (cmt)
=>ΔDAE=ΔFEC(g−c−g)ΔDAE=ΔFEC(g−c−g)
=> DE=FC(2 cạnh t/ứ)
=> Đpcm
vote mình 5 sao nha
ak mà bạn sửa hộ mình là D nha