Phương pháp giải: Thu gọn đơn thức rồi tìm bậc của nó. Chú ý: Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong đa thức đó. Giải chi tiết:Ta có: \(\begin{array}{l}A = - 3{x^5} - \frac{1}{2}{x^3}y - \frac{3}{4}x{y^2} + 3{x^5} + 2 - \frac{3}{4}{x^2}y\\A = \left( { - 3{x^5} + 3{x^5}} \right) - \frac{1}{2}{x^3}y - \frac{3}{4}x{y^2} - \frac{3}{4}{x^2}y\\A = - \frac{1}{2}{x^3}y - \frac{3}{4}x{y^2} - \frac{3}{4}{x^2}y\end{array}\) Bậc của \({x^3}y\) là 4 Bậc của \(x{y^2}\) là 3 Bậc của \({x^2}y\) là 3 Vậy bậc của đa thức \(A\) là 4. Chọn B.