a) A= ($\frac{x+\sqrt[]{x}}{x\sqrt[]{x}+x+\sqrt[]{x} + 1}$ + $\frac{1}{x+1}$ ) : $\frac{\sqrt[]{x} -1}{\sqrt[]{x} + 1}$
= ($\frac{\sqrt[]{x}.(\sqrt[]{x} +1)}{x(\sqrt[]{x}+1)+\sqrt[]{x} +1}$ + $\frac{1}{x+1}$): $\frac{\sqrt[]{x} -1}{\sqrt[]{x} + 1}$
= ($\frac{\sqrt[]{x}.(\sqrt[]{x} +1)}{(\sqrt[]{x}+1)(x +1)}$ + $\frac{1}{x+1}$ ) : $\frac{\sqrt[]{x} -1}{\sqrt[]{x} + 1}$
= ($\frac{\sqrt[]{x}}{x +1}$+ $\frac{1}{x+1}$ ) : $\frac{\sqrt[]{x} -1}{\sqrt[]{x} + 1}$
= $\frac{+1}{x+1}$ . $\frac{\sqrt[]{x} + 1}{\sqrt[]{x} - 1}$
= $\frac{($\frac{x +2\sqrt[]{x} +1 }{x\sqrt[]{x} -x +\sqrt[]{x}-1}$ + 1 )²}{(x+1)(\sqrt[]{x}-1)}$
=