1. a) 2x − ( 3 − 2x ) = 3x + 1
<=> 2x - 3 + 2x -3x = 1
<=> 2x + 2x -3x = 1 + 3
<=> x = 4
b) 5( x−3 ) − 4 = 2( x −1 ) + 7
<=> 5x -15 -4 = 2x -2 + 7
<=> 5x -2x = 15 + 4 + 7
<=> 3x = 26
<=> x = $\frac{26}{3}$
c) 8x - $\frac{3}{4}$ -3x -$\frac{2}{2}$ = 2x - $\frac{1}{2}$ +x + $\frac{3}{4}$ (mẫu số chung là 4)
=> 32x - 3 - 12x + 1 = 8x - 2 +4x + 3
<=> 32x -12x -8x -4x = 3 -1 -2 +3
<=> 12x = 3
<=> x = $\frac{1}{4}$
d) 2(x+5)/3+x+12/2-5(x-2)/6=x/3+11
<=> 4 (x+5) +6x +36 - 5 (x-2) = 2x + 66
<=> 4x +20 +6x +36 -5x +10 = 2x +36
<=> 4x +6x -5x -2x = -20 -36 -10 +36
<=> 3x = -30
<=> x = -10
2. a) (5x-4)(4x+6)=0
<=> $20x^{2}$ +30x -16x -24 = 0
<=> $20x^{2}$ + 14x -24 = 0
<=> \(\left[ \begin{array}{l}x=\frac{4}{5} \\x=\frac{-3}{2} \end{array} \right.\)