Đáp án:
$\begin{array}{l}
B1)\\
a)Dkxd:x \ge 2\\
\sqrt {4x - 8} - \sqrt {9x - 18} + \sqrt {\dfrac{{x - 2}}{{25}}} = - 3\\
\Leftrightarrow \sqrt {4\left( {x - 2} \right)} - \sqrt {9\left( {x - 2} \right)} + \dfrac{{\sqrt {x - 2} }}{5} = - 3\\
\Leftrightarrow 2\sqrt {x - 2} - 3\sqrt {x - 2} + \dfrac{1}{5}\sqrt {x - 2} = - 3\\
\Rightarrow \dfrac{{ - 4}}{5}\sqrt {x - 2} = - 3\\
\Rightarrow \sqrt {x - 2} = \dfrac{{15}}{4}\\
\Rightarrow x - 2 = \dfrac{{225}}{{16}}\\
\Rightarrow x = \dfrac{{257}}{{16}}\left( {tmdk} \right)\\
\text{Vậy}\,x = \dfrac{{257}}{{16}}\\
b)Dkxd:x \ge \dfrac{{ - 4}}{5}\\
x - \sqrt {5x + 4} = 2\\
\Rightarrow x - 2 = \sqrt {5x + 4} \\
\Rightarrow {x^2} - 4x + 4 = 5x + 4\\
\Rightarrow {x^2} - 9x = 0\\
\Rightarrow x\left( {x - 9} \right) = 0\\
\Rightarrow \left[ \begin{array}{l}
x = 0\left( {tm} \right)\\
x = 9\left( {tm} \right)
\end{array} \right.\\
\text{Vậy}\,x = 0;x = 9\\
B2)\\
Dkxd:x \ge 0;x \ne 4\\
a)x = 11 + 6\sqrt 2 \left( {tmdk} \right)\\
= 9 + 2.3.\sqrt 2 + 2\\
= {\left( {3 + \sqrt 2 } \right)^2}\\
\Rightarrow \sqrt x = 3 + \sqrt 2 \\
A = \dfrac{{x + 3}}{{\sqrt x - 2}} = \dfrac{{11 + 6\sqrt 2 + 3}}{{3 + \sqrt 2 - 2}}\\
= \dfrac{{14 + 6\sqrt 2 }}{{1 + \sqrt 2 }}\\
= \dfrac{{\left( {14 + 6\sqrt 2 } \right)\left( {\sqrt 2 - 1} \right)}}{{2 - 1}}\\
= 14\sqrt 2 - 14 + 12 - 6\sqrt 2 \\
= 8\sqrt 2 - 2\\
b)B = \dfrac{{\sqrt x - 1}}{{\sqrt x + 2}} + \dfrac{{5\sqrt x - 2}}{{x - 4}}\\
= \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 2} \right) + 5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x - 3\sqrt x + 2 + 5\sqrt x - 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x + 2\sqrt x }}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\sqrt x }}{{\sqrt x - 2}}\\
c)C = \dfrac{A}{B}\\
= \dfrac{{x + 3}}{{\sqrt x - 2}}:\dfrac{{\sqrt x }}{{\sqrt x - 2}}\\
= \dfrac{{x + 3}}{{\sqrt x }} = \sqrt x + \dfrac{3}{{\sqrt x }}\\
Theo\,\text{Cô} - si:\\
\sqrt x + \dfrac{3}{{\sqrt x }} \ge 2\sqrt {\sqrt x .\dfrac{3}{{\sqrt x }}} = 2\sqrt 3 \\
\Rightarrow C \ge 2\sqrt 3 \\
\Rightarrow GTNN:C = 2\sqrt 3 \\
Khi:\sqrt x = \dfrac{3}{{\sqrt x }} \Rightarrow x = 3 \Rightarrow x = \sqrt 3
\end{array}$