`@Mon`
`@\text{ Bài 1:}`
`a)3x^3y^2-6x^2y^3+9x^2y^2`
`=3x^2y^2.(x-2y+3)`
`b)12x^2y-18xy^2-30y^2`
`=6y.(2x-3xy-5y)`
`c)4x.(2y-z)+7y(z-2y)`
`=4x.(2y-z)-7y(2y-z)`
`=(2y-z)(4x-7y)`
`d)27x^2(y-1)-9x^3(1-y)`
`=27x^2.(y-1)+9x^3(y-1)`
`=9x^2.(y-1)(3+x)`
`e)(x^2+1)^2-6.(x^2+1)+9`
`=(x^2+1)^2-3(x^2+1)-3(x^2+1)+3^2`
`=(x^2+1).(x^2+1-3)`
`(x^2-2)^2`
`f)9(x+5)^2-(x+7)^2`
`=[3(x+5)]^2-(x+7)^2`
`=(3x+15-x-7)(3x+15+x+7)`
`=(2x+8)(4x+2x)`
`=4.(x+4)(2x+11)`
`g)49(y-4)^2-9(y+z)^2`
`=[7(y-4)]^2-[3(y+2)]^2`
`=(7y-28-3y-6)(7y-28+3y+6)`
`=(4y-34)(10y-22)`
`=4(2y-17)(5y-11)`
`h)-(x+2)+3(x^2-4)`
`=-(x+2)+3(x-2)(x+2)`
`=(x+2)(-1+3x-6)`
`=(x+2)(3x-7)`
`@\text{ Bài 2:}`
`a)5(x+3_-2x(x+3)=0`
`<=>5(x+3)(5-2x)=0`
`<=>` \(\left[ \begin{array}{l}x+3=0\\5-2x=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=-3\\x=\dfrac{5}{2}\end{array} \right.\)
`b)6x(x^2-2)-(2-x^2)=0`
`<=>6x(x^2-2)+(x^2-2)=0`
`<=>(6x+1)(x^2-2)=0`
`<=>` \(\left[ \begin{array}{l}6x+1=0\\x^2-2=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}6x=-1\\x^2=2\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{-1}{6}\\\pm\sqrt{2}\end{array} \right.\)
`c)(x+1)^2-(x+1)(x-2)=0`
`<=>(x+1)[(x+1)-(x-2)]=0`
`<=>(x+1)=0`
`<=>x=-1`
`d)4x(x-2017)-x+2017=0`
`<=>4x(x-2017)-(x-2017)=0`
`<=>(4x-1)(x-2017)=0`
`<=>`\(\left[ \begin{array}{l}4x-1=0\\x-2017=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{1}{4}\\x=2017\end{array} \right.\)
`e)(x+4)^2-16=0`
`<=>(x+4)^2=16`
`<=>(x+4)^2=(+-4)^2`
`<=>`\(\left[ \begin{array}{l}x+4=4\\x+4=-4\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=-8\end{array} \right.\)
`f)12x-x^2-36=0`
`<=>-(x^2-12x+35)=0`
`<=>-(x-6)^2=0`
`<=>(x-6)^2=0`
`<=>x-6=0`
`<=>x=6`
`f)x(x-2012)-2013x+2012.2013=0`
`<=>x(x-2012)-2013(x-2012)=0`
`<=>(x-2012)(x-2013)=0`
`<=>`\(\left[ \begin{array}{l}x-2012=0\\x-2013=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=2012\\x=2013\end{array} \right.\)
`g)(x-1)^3+1+3x(x-4)=0`
`<=>x^3-3x^2+3x-1+1+3x^2-12x=0`
`<=>x^3-9x=0`
`<=>x(x^2-9)=0`
`<=>`\(\left[ \begin{array}{l}x=0\\x^2-9=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x^2=9\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=0\\x=\pm3\end{array} \right.\)
`h)4x^2-25-(2x-5)(2x+7)=0`
`<=>(2x)^2-5^2-(2x-5)(2x+7)=0`
`<=>(2x-5)(2x+5)-(2x-5)(2x+7)=0`
`<=>(2x-5)[(2x+5)-(2x+7)]=0`
`<=>2x-5=0`
`<=>2x=5`
`<=>x=\frac{5}{2}`
`i_x^3+27+(x+3)(x-9)=0`
`<=>(x+3)(x^2+3x+9)+(x+3)(x-9)=0`
`<=>(x+3)(x^2+4x)=0`
`<=>`\(\left[ \begin{array}{l}x+3=0\\x^2+4x=0\end{array} \right.\)
`<=>x=-3; x=0; x=-4`