a) $A= (2x+y) (4x^2-2xy+y^2) - (2x+y) ^3 + 6xy (2x-y)$
$=(2x+y)(2x-y)^2-(2x+y)^3+6xy(2x-y)$
$=(2x+y)[(2x-y)^2-(2x+y)^2]+6xy(2x-y)$
$=(2x+y)(2x-y+2x+y)(2x-y-2x-y)+6xy(2x-y)$
$=(2x+y)(4x)(-2y)+6xy(2x-y)$
$=-2xy[4(2x+y)-3(2x-y)]$
Với $x= 3$; $y=\dfrac{-2}{3}$
$\Rightarrow A=-2.3.\dfrac{-2}{3}[8.3+4.(\dfrac{-2}{3})-3(2x-y)]$
$=4[24-\dfrac{8}{3}-3(2.3+\dfrac{2}{3})]$
$=\dfrac{16}{3}$
b) $B=(x^2-2x+4) (x+2) - (x-2)^3-6x (x+2)$
$=(x-2)^2(x+2)-(x-2)^3-6x(x+2)$
$=(x-2)^2(x+2-x+2)-6x(x+2)$
$=4(x-2)^2-6x(x+2)$
Tại $x=\dfrac{4}{9}$
$B=4(\dfrac{4}{9}-2)^2-6\dfrac{4}{9}(\dfrac{4}{9}+2)$
$=\dfrac{258}{81}$
Bài 2:
a) $A=(x+2y) (x^2-2xy+4y^2) - (x^3+8y^3-20)$
$=x^3-2x^2y+4xy^2+2x^2y-4xy^2+8y^3-x^3-8y^3+20$
$=20$ không phụ thuộc vào $x$
Bài 3:
a) $2x^2-1-(x^2-3x+2)=(x^2-3)+2x$
$\Rightarrow 2x^2-1-x^2+3x-2-x^2+3-2x$
$\Rightarrow x=-1$
b) $(x-3) (2x-4)-2x (x-1)=5$
$\Rightarrow 2x^2-4x-6x+12-2x^2+2x-5=0$
$\Rightarrow -8x+7=0$
$\Rightarrow x=\dfrac{7}{8}$