Đáp án:
1) A=9
Giải thích các bước giải:
\(\begin{array}{l}
1)Thay:x = 16\\
\to A = \dfrac{{\sqrt {16} + 5}}{{\sqrt {16} - 3}} = \dfrac{9}{1} = 9\\
2)B = \dfrac{{4\left( {\sqrt x - 3} \right) + 2x - \sqrt x - 13 - \sqrt x \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{4\sqrt x - 12 + 2x - \sqrt x - 13 - x - 3\sqrt x }}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{x - 25}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
P = B:A = \dfrac{{x - 25}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}:\dfrac{{\sqrt x + 5}}{{\sqrt x - 3}}\\
= \dfrac{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 5}}\\
= \dfrac{{\sqrt x - 5}}{{\sqrt x + 3}}\\
3)x - 1 = \left( {\sqrt x + 3} \right).P + 2\sqrt {x + 3} \\
\to x - 1 = \left( {\sqrt x + 3} \right).\dfrac{{\sqrt x - 5}}{{\sqrt x + 3}} + 2\sqrt {x + 3} \\
\to x - 1 = \sqrt x - 5 + 2\sqrt {x + 3} \\
\to x - \sqrt x + 4 = 2\sqrt {x + 3} \\
\to x + 3 - \left( {\sqrt x - 1} \right) - 2\sqrt {x + 3} = 0\\
\to \left( {x + 3} \right) - 2\sqrt {x + 3} = \sqrt x - 1\\
\to \sqrt {x + 3} \left( {\sqrt {x + 3} - 2} \right) = \sqrt x - 1\\
\to \sqrt {x + 3} \left( {\sqrt {x + 3} - 2} \right)\left( {\sqrt {x + 3} + 2} \right) = \left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)\\
\to \sqrt {x + 3} \left( {x + 3 - 4} \right) = \left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right)\\
\to \sqrt {x + 3} .\left( {x - 1} \right) - \left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right) = 0\\
\to \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)\sqrt {x + 3} - \left( {\sqrt x - 1} \right)\left( {\sqrt {x + 3} + 2} \right) = 0\\
\to \left( {\sqrt x - 1} \right)\left[ {\left( {\sqrt x + 1} \right)\sqrt {x + 3} - \sqrt {x + 3} - 2} \right] = 0\\
\to \left[ \begin{array}{l}
\sqrt x - 1 = 0\\
\left( {\sqrt x + 1} \right)\sqrt {x + 3} - \sqrt {x + 3} - 2 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\\
\sqrt {x + 3} \left( {\sqrt x + 1 + 2} \right) = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x + 3 = 0\\
\sqrt x + 3 = 0\left( l \right)\\
x = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 3\left( l \right)\\
x = 1
\end{array} \right.
\end{array}\)