Thực hiện phép tính :
a) \(3^6:3^2+2^3.2^2\)
b) \(\left(39.42-37.42\right):42\)
a, 36 : 32 + 23 . 22 = 34 + 25 = 81 + 32 = 113
b, ( 39.42 - 37.42 ) : 42
= 42. ( 39 - 37 ) : 42
= 42 . 2 : 42
= 84 : 42
= 2
Bài 108 (Sách bài tập - tập 1 - trang 19)
Tìm số tự nhiên \(x\), biết :
a) \(2.x-138=2^3.2^2\)
b) \(231-\left(x-6\right)=1339:13\)
Bài 109 (Sách bài tập - tập 1 - trang 19)
Xem xét các biểu thức sau có bằng nhau hay không ?
a) \(1+5+6\) và \(2+3+7\)
b) \(1^2+5^2+6^2\) và \(2^2+3^2+7^2\)
c) \(1+6+8\) và \(2+4+9\)
d) \(1^2+6^2+8^2\) và \(2^2+4^2+9^2\)
Bài 110 (Sách bài tập - tập 1 - trang 19)
Xét xem các biểu thức sau có bằng nhau hay không ?
a) \(10^2+11^2+12^2\) và \(13^2+14^2\)
b) \(\left(30+25\right)^2\) và \(3025\)
c) \(37.\left(3+7\right)\) và \(3^3+7^3\)
d) \(48.\left(4+8\right)\) và \(4^3+8^3\)
Bài 111 (Sách bài tập - tập 1 - trang 19)
Để đếm số hạng của một dãy số mà hai số hạng liên tiếp của dãy cách nhau cùng một số đơn vị, ta có thể dùng công thức :
Số hạng = (Số cuối - Số đấu) : (Khoảng cách giữa hai số ) + \(1\)
Ví dụ : \(12,15,18,...,90\) (dãy số cách \(3\)) có :
\(\left(90-12\right):3+1=27\) (số hạng)
Hãy tính số hạng của dãy : \(8,12,16,20,...,100\)
Bài 112 (Sách bài tập - tập 1 - trang 19)
Để tính tổng các số hạng của một dãy số mà hai số hạng liên tiếp cách nhau cùng một số đơn vị, ta có thể dùng công thức :
Tổng = (Số đầu + Số cuối). (Số số hạng) : 2
Ví dụ : \(12+15+18+...+90=\left(12+90\right).27:2=1377\)
Hãy tính tổng : \(8+12+16+20+...+100\)
Bài 113 (Sách bài tập - tập 1 - trang 19)
Ta đã biết : Trong hệ ghi số thập phân, cứ mười đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước. Mỗi chữ số trong hệ thập phân nhận một trong mười giá trị : \(0,1,2,-,9\)
Số \(\overline{abcd}\) trong hệ thập phân có giá trị bằng :
\(a.10^3+b.10^2+c.10+d\)
Có một hệ ghi số mà cứ hai đơn vị ở một hàng thì làm thành một đơn vị ở hàng trên liền trước, đó là hệ nhị phân. Mỗi chữ số trong hệ nhị phân nhận một trong hai giá trị 0 và 1. Một số trong hệ nhị phân, chẳng hạn \(\overline{abcd}\) được kí hiệu là \(\overline{abcd_{\left(2\right)}}\)
Số \(\overline{abcd_{\left(2\right)}}\) trong hệ thập phân có giá trị bằng :
\(a.2^3+b.2^2+c.2+d\)
Ví dụ : \(\overline{1101}_{\left(2\right)}=1.2^3+1.2^2+0.2+1=8+4+0+1=13\)
a) Đổi sang hệ thập phân các số sau : \(\overline{100}2_{\left(2\right)};\overline{111}_{\left(2\right)};\overline{1010}_{\left(2\right)};\overline{1011}_{\left(2\right)}\)
b) Đổi sang hệ nhị phân các số sau : \(5;6;9;12\)
Bài 9.1 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 20)
Giá trị của biểu thức \(5.2^3\) bằng :
(A) 1000 (B) 30 (C) 40 (D) 115
Hãy chọn phương án đúng ?
Bài 9.2 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 20)
a) \(4x^2+15=47\)
b) \(4.2^x-3=125\)
Bài 9.3 - Bài tập bổ sung (Sách bài tập - tập 1 - trang 20)
Dùng năm chữ số 5, dấu các phép tính và dấu ngoặc (nếu cần), hãy viết một biểu thức có giá trị bằng 6 ?
80 - [130 -(12 - 4 )^2
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến