Bài 18: Tam giác ABC có AB > AC. Từ trung điểm M của BC vẽ một đường thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB, AC lầm lượt tại E và F. Chứng minh rằng: a/ BE = CF b/ ; c/
Bài 19. Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E. Chứng minh rằng :
a) AFE cân
b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE
c) Chứng minh rằng : AE =
Bài 20:Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: ABD = EBD.
2/ Chứng minh: ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
Bài 21. Cho tam giác ABC cân tại A (), lấy M . Từ M kẻ MH // AB (H),
kẻ MI // AC (I ).
CMR: .
CMR: AI = HC.
Lấy N sao cho HI là trung trực của MN. CMR: IN = IB.
Gọi giao điểm NH và AB là D. CMR: Chu vi không phụ thuộc vào vị trí điểm M trên BC.