Đáp án:
Giải thích các bước giải:
+ ) $\frac{5}{3}$ - x + $\frac{1}{3}$ = $\frac{5}{10}$
$\frac{5}{3}$ + $\frac{1}{3}$ - x = $\frac{5}{10}$
2 - x = $\frac{5}{10}$
x = 2 - $\frac{5}{10}$
x = $\frac{3}{2}$
+ ) x - $\frac{5}{3}$ = $\frac{1}{2}$ + $\frac{1}{3}$
x = $\frac{5}{3}$ + $\frac{1}{3}$ + $\frac{1}{2}$
x = 2 + $\frac{1}{2}$
x = $\frac{5}{2}$
+ ) x - ( 1 - $\frac{1}{4}$ ) = $\frac{2}{3}$
x - 1 + $\frac{1}{4}$ = $\frac{2}{3}$
x + $\frac{1}{4}$ = $\frac{2}{3}$ + 1
x + $\frac{1}{4}$ = $\frac{5}{3}$
x = $\frac{5}{3}$ - $\frac{1}{4}$
x = $\frac{17}{12}$
+ ) x - 5 = $\frac{1}{3}$ + $\frac{1}{4}$
x - 5 = $\frac{7}{12}$
x = $\frac{7}{12}$ + 5
x = $\frac{67}{12}$
+ ) x - ( $\frac{1}{5}$ + $\frac{1}{4}$ ) = $\frac{7}{10}$
x - $\frac{1}{5}$ - $\frac{1}{4}$ = $\frac{7}{10}$
x = $\frac{7}{10}$ + $\frac{1}{5}$ + $\frac{1}{4}$
x = $\frac{9}{10}$ + $\frac{1}{4}$
x = $\frac{23}{20}$