Bài 3:a=-5, b=-6
1/ ⇒$a^{2}$-2ab+$b^{2}$=$(-5)^{2}$-2.(-5).(-6)+$(-6)^{2}$=25-60+36=-35+36=1
$(a-b)^{2}$=$[-5-(-6)]^{2}$=$(-5+6)^{2}$=$1^{2}$=1
⇒ $a^{2}$-2ab+$b^{2}$=$(a-b)^{2}$
2/⇒(a+b)(a-b)=[-5+(-6)][-5-(-6)]=(-11).[-5+6]=-11.1=-11
$a^{2}$-$b^{2}$=$(-5)^{2}$-$(-6)^{2}$=25-36=-11
⇒ (a+b)(a-b)=$a^{2}$-$b^{2}$
3/⇒$a^{2}$-2ab+$b^{2}$=$(-5)^{2}$+2.(-5).(-6)+$(-6)^{2}$=25+60+36=121
$(a+b)^{2}$=$[-5+(-6)]^{2}$=$(-11)^{2}$=121
⇒$a^{2}$-2ab+$b^{2}$=$(a+b)^{2}$
Bài 4:
1/(x+3)(x²-25) = 0
⇒\(\left[ \begin{array}{l}x+3=0\\x^{2}-25=0\end{array} \right.\)⇒\(\left[ \begin{array}{l}x=0-3\\x^{2}=25=5^{2}=(-5)^{2}\end{array} \right.\)⇒\(\left[ \begin{array}{l}x=-3\\x∈{5;-5}\end{array} \right.\)
KL: x∈{-3;-5;5}
2/(x² +2).(x² – 49) = 0
⇒\(\left[ \begin{array}{l}x²+2=0\\x²-49=0\end{array} \right.\)⇒\(\left[ \begin{array}{l}x²=-2\\x²=49=7²=(-7)²\end{array} \right.\)⇒\(\left[ \begin{array}{l}x∈∅(Do x²≥0 mà -2<0)\\x∈{7;-7}\end{array} \right.\)
KL: x∈{7;-7}
3/|x-91|.(-8) =-16
|x-91| =-16:(-8)=2
⇒x-91∈{2;-2}
+)x-91=2 +)x-91=-2
x =2+91 x =-2+91
x =93 x =89
KL: x∈{93;89}
Chúc bạn học tốt!