Cho A, B là hai tập hợp và mệnh đề P : "A là một tập hợp con của B"
a) Viết P dưới dạng một mệnh đề kéo theo
b) Lập mệnh đề đảo của P
c) Lập mệnh đề phủ định của P và viết nó dưới dạng một mệnh đề kéo theo
a) \(P:\forall x\left(x\in A\Rightarrow x\in B\right)\)
b) Mệnh đề đảo của P là \(\forall x\left(x\in B\Rightarrow x\in A\right)\) hay "B là một tập hợp con của A"
c) Phủ định của P là ; "A không phải là một tập con của B", hay "\(\exists x:\left(x\in A\Rightarrow xotin B\right)\)"
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
Tìm m để hệ bất phương trình sau có nghiệm
\(\begin{cases}x-1<3-x\\mx+1>x\end{cases}\)
1.Tìm a và b để đường thẳng (d): (a - 2)x + b có hệ số góc bằng 4 và đi qua điểm M(1;-3).
Hai đường thẳng xx' và yy' song song với nhau bị cắt bởi 1 cát tuyến tại 2 điểm A và B. Gọi At là phân giác của xAB
a/ At có cắt đường thẳng yy' không? Vì sao?( Chỗ này là tiên đề ơ-clit nha)
b/ Cho xAB=80*. Tính ACB?( At cắt yy' tại C)
Lập phương trình tổng quát của đường thẳng ∆ đi qua điểm M (-5; -8) và có hệ số góc k = -3
3456 : x = 30
Tìm x hộ mình (không dùng số thập phân )
Cho tam giác ABC, tìm M sao cho:
\(\overrightarrow {MA} + 2\overrightarrow {MB} + 3\overrightarrow {MC} = \overrightarrow 0 \)
Bài 63 (SBT trang 124)
Cho a, b, c là 3 số thực thỏa mãn điều kiện \(a^3>36\) và \(abc=1\)
Xét tam thức bậc hai : \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}\)
a) Chứng minh rằng \(f\left(x\right)>0;\forall x\)
b) Từ câu a) suy ra \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Giúp vs ak :
giải và biện luận pt :
\(\frac{x+ab}{a+1}+\frac{x+bc}{c+1}+\frac{x+b^2}{b+1}=3b\left(a,b,ce-1\right)\)
Xét dấu các tam thức bậc hai
a) 5x2 – 3x + 1; b) - 2x2 + 3x + 5;
c) x2 + 12x + 36; d) (2x - 3)(x + 5).
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến