Đáp án:
$\begin{array}{l}
B4)\\
5)\left( {{x^2} - 4{y^2}} \right) - \left( {x - 2y} \right)\\
= \left( {x - 2y} \right)\left( {x + 2y} \right) - \left( {x - 2y} \right)\\
= \left( {x - 2y} \right)\left( {x + 2y - 1} \right)\\
6)\left( {xy - 2x} \right) - {y^2} + 2y\\
= x\left( {y - 2} \right) - y\left( {y - 2} \right)\\
= \left( {y - 2} \right)\left( {x - y} \right)\\
B5)c){\left( {x + 3} \right)^2} - \left( {2x - 5} \right)\left( {x + 3} \right) = 0\\
\Leftrightarrow {x^2} + 6x + 9 - 2{x^2} - 6x + 5x + 15 = 0\\
\Leftrightarrow - {x^2} + 5x + 24 = 0\\
\Leftrightarrow {x^2} - 5x - 24 = 0\\
\Leftrightarrow \left( {x - 8} \right)\left( {x + 3} \right) = 0\\
\Leftrightarrow x = 8;x = - 3\\
Vậy\,x = 8;x = - 3\\
e)\left( {{x^2} - 4} \right) - 2x + 4 = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( {x + 2} \right) - 2\left( {x - 2} \right) = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( {x + 2 - 2} \right) = 0\\
\Leftrightarrow \left( {x - 2} \right).x = 0\\
\Leftrightarrow x = 0;x = 2\\
Vậy\,x = 0;x = 2\\
f)\left( {{x^2} - 5x} \right) - 3x + 15 = 0\\
\Leftrightarrow x\left( {x - 5} \right) - 3\left( {x - 5} \right) = 0\\
\Leftrightarrow \left( {x - 5} \right)\left( {x - 3} \right) = 0\\
\Leftrightarrow x = 5;x = 3\\
Vậy\,x = 5;x = 3\\
g){\left( {x + 1} \right)^2} - 2\left( {x + 1} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {x + 1 - 2} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {x - 1} \right) = 0\\
\Leftrightarrow x = - 1;x = 1\\
Vậy\,x = - 1;x = 1
\end{array}$