Bài 4. Cho hình bình hành ABCD. Tia phân giác của góc A cắt cạnh CD tại M, tia phân giác của góc C cắt cạnh AB tại N. Chứng minh: a/ Tứ giác AMCN là hình bình hành. b/ Ba đường thẳng AC, MN, BD đồng quy.

Các câu hỏi liên quan

Câu 8,9︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎