Đáp án:
`M>N`
Giải thích các bước giải:
Ta có:
`M=(5^2018+1)/(5^2017+1)=>1/5M=((5^2018+5)-4)/(5^2018+5)=1-4/(5^2018+5)`
`N=(5^2017+1)/(5^2016+1)=>1/5N=((5^2017+5)-4)/(5^2017+5)=1-4/(5^2017+5)`
Ta thấy:
`5^2018+5>3^2017+5`
`=>4/(5^2018+5)<4/(5^2017+5)`
`=>1-4/(5^2018+5)>1-4/(5^2017+5)`
`=>1/5M>1/5N=>M>N.`
Vậy `M>N`.