Ta có :
\(A=\dfrac{17^{18}+1}{17^{19}+1}\)
17A= \(17\times\dfrac{17^{18}+1}{17^{19}+1}\)
\(17A=\dfrac{17^{19}+17}{17^{19}+1}\)
\(17A=\dfrac{\left(17^{19}+1\right)+16}{17^{19}+1}\)
\(17A=\dfrac{17^{19}+1}{17^{19}+1}+\dfrac{16}{17^{19}+1}\)
\(17A=1+\dfrac{16}{17^{19}+1}\)
Lại có :
\(B=\dfrac{17^{17}+1}{17^{18}+1}\)
\(17B=17\times\dfrac{17^{17}+1}{17^{18}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}\)
\(17B=\dfrac{\left(17^{18}+1\right)+16}{17^{18}+1}\)
\(17B=\dfrac{17^{18}+1}{17^{18}+1}+\dfrac{16}{17^{18}+1}\)
\(17B=1+\dfrac{16}{17^{18}+1}\)
Mà : \(\dfrac{16}{17^{19}+1}< \dfrac{16}{17^{18}+1}\)
\(\Rightarrow1+\dfrac{16}{17^{19}+1}< 1+\dfrac{16}{17^{18}+1}\)
⇒ A < B
Vậy A < B