Bài 6: Cho tam giác ABC có AB = AC ,gọi M là trung điểm cua cạnh BC
a) Chứng minh 2 tam giác ABM&ACM bằng nhau
b) Chứng minh AM vuông góc với BC
c) AM là phân giác góc A
Bài 7: Cho DABC có AB < AC. Kẻ tia phân giác AD của ( D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a) DBDF = DEDC.
b) BF = EC.
c) F, D, E thẳng hàng.
d) AD ^ FC
Bài 8. Cho DABC, M là trung điểm của BC. Trên tia đối của tia MA, lấy điểmEsaochoME = MA.
a) Chứng minh AC // BE.
b) Gọi I là một điểm trên AC, K là một điểm trên EB sao cho AI = EK. Chứng minh 3 điểm I, M, K thẳng hàng.
Bài 9. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh:
a) D AOI = D BOI.
b) AB ^ OI.
Bài 10. Cho góc nhọn xOy. Trên tia Ox, lấy 2 điểm A và C. Trên tia Oy lấy 2 điểm B và D sao cho
OA = OB ; OC = OD. (A nằm giữa O và C; B nằm giữa O và D).
a) Chứng minh DOAD = DOBC
b) So sánh 2 góc và .
Bài 11. Cho DABC vuông ở A. TRên tia đối của tia AC lấy điểm D sao cho AD = AC.
a) Chứng minh DABC = DABD
b) Trên tia đối của tia AB, lấy điểm M. Chứng minh DMBD = D MBC.