Giải thích các bước giải:
Bài 7:
a/. 498²
= (500 - 2)²
= 500² - 2. 500 . 2 + 2²
= 250 000 - 2 000 + 4
= 248 004
b/. 93. 107
= (100 - 7)( 100 + 7)
= 100² - 7²
= 10 000 - 49
= 9 951
c/. 163²+ 74.163 + 37²
= 163² + 2. 163 . 37 + 37²
= (163 + 37)²
= 200²
=40 000
d/. 1995² – 1994.1996
= 1995² – (1995 - 1) (1995 + 1)
= 1995² – (1995² - 1²)
= 1995² – 1995² + 1
= 0 + 1
= 1
e/. 98. 28 – (184 – 1)(184+ 1)
= (18)8 - [(184)² - 1²]
= 188 - 188 + 1
= 0 + 1
= 1
f/. 125² - 2. 125. 25 + 25²
= (125 - 25)²
= 100²
= 10 000
Bài 8:
a/. (x²+ 3x+ 1)² + (3x – 1)² – 2(x²+ 3x+ 1)(3x– 1)
= (x²+ 3x+ 1)² – 2(x²+ 3x+ 1)(3x– 1) + (3x – 1)²
= [(x²+ 3x+ 1) - (3x – 1)]²
= (x²+ 3x+ 1 - 3x + 1)²
= [(x² + (3x - 3x) + (1 + 1)]²
= (x² + 2)²
= x4 + 4x² + 4
b/. (3x³ + 3x + 1)(3x³- 3x +1) – (3x³+1)²
= [(3x³ + 1)+ 3x)][(3x³+ 1) - 3x] – (3x³+1)²
= [(3x³ + 1)² - (3x )²] – (3x³+1)²
= (3x³ + 1)² - (3x )² – (3x³+1)²
= [(3x³ + 1)² – (3x³+1)²] - 9x²
= - 9x²
c/. (2x² + 2x + 1)(2x² – 2x + 1) – (2x²+ 1)²
= [(2x²+ 1)+ 2x)][(2x²+ 1) – 2x)] – (2x²+ 1)²
= [(2x² + 1)² - (2x)²] – (2x²+ 1)²
= (2x² + 1)² - (2x)² – (2x²+ 1)²
= [(2x² + 1)² – (2x²+ 1)²] - 4x²
= - 4x²
Bài 9:
a/. A = (2x + y)² - (2x + y) (2x - y)+ y(x - y) với x = - 2; y = 3.
A = 4x² + 4xy + y² - (4x² - y²) + xy - y²
A = 4x² + 4xy + y² - 4x² + y²+ xy - y²
A = (4x²- 4x²) + (y² + y²- y²) + (4xy + xy)
A = y² + 5xy
Thay x = - 2; y = 3 vào A, ta có:
A = 3² + 5.(-2). 3 = 9 - 30 = - 21
b/. B = (a - 3b)² - (a + 3b)² - (a -1)(b -2) với a = `1/2`; b = -3.
B = [(a - 3b)² - (a + 3b)²] - (a -1)(b - 2)
B = [(a - 3b) - (a + 3b)](a - 3b + a + 3b) -( ab - 2a - b + 2)
B = (a - 3b - a - 3b)(a - 3b + a + 3b) - ab + 2a + b - 2
B = [(a - a) - (3b + 3b)][(a + a) - (3b - 3b)] - ab + 2a + b - 2
B = - 6b. 2a - ab + 2a + b - 2
B = - 12ab - ab + 2a + b - 2
B = - 13ab + 2a + b - 2
Thay a = `1/2`; b = - 3 vào B, ta cò:
B = - 13. `1/2`. (- 3) + 2. `1/2` + (-3) - 2
B = `(39)/2` + 1 - 3 - 2 = `(31)/2`
Chúc bạn học tốt nhé!