$a$) $25.5 > 5^n > 5.25$
$⇔ 5^3 > 5^n > 5^3$
Vì $n ∈ N ⇒ n ∈$ $\varnothing$
$b$) $(n^{54})^2 = n$
$⇔ n^{108} = n$
$⇔ n^{108} - n = 0$
$⇔ n.(n^{107} - 1) =0$
$⇒$ \(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
$c$) $243 >3n > 9.27$
$⇔ 81> n >81$
Vì $n ∈ N ⇒ n ∈$ $\varnothing$
$d$) $2^{n+3} . 2^n = 144$
$⇔ 2^n.(2^3 + 1) = 144$
$⇔ 2^n.9=144$
$⇔ 2^n=16$
$⇔ 2^n = 2^4$
$⇔ n=4$.