Giải thích các bước giải:
$a)(n+3)\vdots n+1$ $(x∈\mathbb{Z})$
Ta có:
$\dfrac{n+3}{n+1}$
$=\dfrac{n+1+2}{n+1}$
$=1+\dfrac{2}{n+1}$
Để $(n+3)\vdots n+1$
$⇒2\vdots n+1$
$⇒n+1∈Ư(2)$
$⇒n+1∈\{±1;±2\}$
Ta có bảng sau:
$\begin{array}{|c|c|}\hline n+1&-2&-1&1&2\\\hline n&-3_{(tm)}&-2_{(tm)}&0_{(tm)}&1_{(tm)}\\\hline\end{array}$
Vậy với $n∈\{-3;-2;0;1\}$ thì $(n+3)\vdots n+1$
$b)(2n+1)\vdots n-2$ $(x∈\mathbb{Z})$
Ta có:
$\dfrac{2n+1}{n-2}$
$=\dfrac{2n-4+5}{n-2}$
$=2+\dfrac{5}{n-2}$
Để $(2n+1)\vdots n-2$
$⇒5\vdots n-2$
$⇒n-2∈Ư(5)$
$⇒n-2∈\{±1;±5\}$
Ta có bảng sau:
$\begin{array}{|c|c|}\hline n-2&-5&-1&1&5\\\hline n&-3_{(tm)}&1_{(tm)}&3_{(tm)}&7_{(tm)}\\\hline\end{array}$
Vậy với $x∈\{-3;1;3;7\}$ thì $(2n+1)\vdots n-2$