Đáp án:
`a. (3x^4-2x^3-2x^2+4x-8):(x^2-2)`
`= \frac{3x^4-2x^3-2x^2+4x-8}{x^2-2}`
`= \frac{3x^4-2x^3-6x^2+4x^2+4x-8}{x^2-2}`
`= \frac{3x^2(x^2-2)-2x(x^2-2)+4(x^2-2)}{x^2-2}`
`= \frac{(x^2-2)(3x^2-2x+4)}{x^2-2}`
`= 3x^2-2x+4`
`b. (2x^3-26x-24):(x^2+4x+3)`
`= \frac{2x^3-26x-24}{x^2+4x+3}`
`= \frac{2(x^3-13x-12)}{(x+3)(x+1)}`
`= \frac{2(x^3+x^2-x^2-x-12x-12)}{(x+3)(x+1)}`
`= \frac{2[x^2(x+1)-x(x+1)-12(x+1)]}{(x+3)(x+1)}`
`= \frac{2(x+1)(x^2-x-12)}{(x+3)(x+1)}`
`= \frac{2(x^2-x-12)}{x+3}`
`= \frac{2(x^2+3x-4x-12)}{x+3}`
`= \frac{2(x+3)(x-4)}{x+3}`
`= 2(x-4)`
`= 2x-8`
`c. (x^3-7x+6):(x+3)`
`= \frac{x^3-7x+6}{x+3}`
`= \frac{x^3-x^2+x^2-x-6x+6}{x+3}`
`= \frac{x^2(x-1)+x(x-1)-6(x-1)}{x+3}`
`= \frac{(x-1)(x^2+x-6)}`
`= \frac{(x-1)(x^2+3x-2x-6)}{x+3}`
`= \frac{(x-1)(x+3)(x-2)}{x+3}`
`= (x-1)(x-2)`
`= x^3-3x+2`