Giải thích các bước giải:
$\lim_{x\to-2}\dfrac{x+\sqrt{2-x}}{x+2}$
$=\lim_{x\to-2}\dfrac{\dfrac{x^2-(2-x)}{x-\sqrt{2-x}}}{x+2}$
$=\lim_{x\to-2}\dfrac{\dfrac{x^2+x-2}{x-\sqrt{2-x}}}{x+2}$
$=\lim_{x\to-2}\dfrac{\dfrac{(x+2)(x-1)}{x-\sqrt{2-x}}}{x+2}$
$=\lim_{x\to-2}\dfrac{x-1}{x-\sqrt{2-x}}$
$=\dfrac{-2-1}{-2-\sqrt{2-(-2)}}$
$=\dfrac34$