Đáp án đúng: C Giải chi tiết:Bất phương trình \(\sqrt {{x^2} - x - 12} < x \Leftrightarrow \left\{ \begin{array}{l}x > 0\\{x^2} - x - 12 \ge 0\\{x^2} - x - 12 < {x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\\left[ \begin{array}{l}x \ge 4\\x \le - 3\end{array} \right.\\x > - 12\end{array} \right. \Leftrightarrow x \ge 4.\) Kết hợp với điều kiện \(x\in Z\) và \(x\in \left[ -\,2018;2018 \right]\Rightarrow x\in \left[ 4;2018 \right]\)\(\Rightarrow \) có 2015 nghiệm nguyên thỏa mãn. Chọn C