`D = (0; +infty)`
`log_{2} x + log_{3} x > 1`
`-> log_{2} x + (log_{2} x)/(log_{2} 3) > 1`
`-> log_{2} x.(1 + 1/(log_{2} 3) > 1`
`-> log_{2} x.((log_{2} 3 + log_{2} 2)/(log_{2} 3)) > 1`
`-> log_{2} x.(log_{2} 6)/(log_{2} 3) > 1`
`-> log_{2} x > (log_{2} 3)/(log_{2} 6)`
`->` $x = 2^{\dfrac{log_{2} 3}{log_{2} 6}}$