Đáp án + Giải thích các bước giải:
`d//3(6-2x)=0`
`->6-2x=0`
`->2x=6`
`->x=3`
`e//x:(3)/(4)+(1)/(4)=-(2)/(3)`
`->x:(3)/(4)=-(2)/(3)-(1)/(4)`
`->x:(3)/(4)=-(11)/(12)`
`->x=-(11)/(12).(3)/(4)`
`->x=-(11)/(16)`
`f//(2)/(3)-(1)/(3)(2x-5)=(3)/(2)`
`->(1)/(3)(2x-5)=(2)/(3)-(3)/(2)`
`->(1)/(3)(2x-5)=-(5)/(6)`
`->2x-5=-(5)/(6):(1)/(3)`
`->2x-5=-(5)/(2)`
`->2x=-(5)/(2)+5`
`->2x=(5)/(2)`
`->x=(5)/(2):2`
`->x=(5)/(4)`
`I//|2x-(1)/(3)|+(5)/(6)=1`
`->|2x-(1)/(3)|=1-(5)/(6)`
`->|2x-(1)/(3)|=(1)/(6)`
`->` \(\left[ \begin{array}{l}2x-\dfrac{1}{3}=\dfrac{1}{6}\\2x-\dfrac{1}{3}=-\dfrac{1}{6}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}2x=\dfrac{1}{6}+\dfrac{1}{3}\\2x=-\dfrac{1}{6}+\dfrac{1}{3}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}2x=\dfrac{1}{2}\\2x=\dfrac{1}{6}\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x=\dfrac{1}{2}:2\\x=\dfrac{1}{6}:2\end{array} \right.\)
`->` \(\left[ \begin{array}{l}x=\dfrac{1}{4}\\x=\dfrac{1}{12}\end{array} \right.\)
Vậy `x∈{(1)/(4);(1)/(12)}`