Đáp án:
$\text{a) A = }$ $\text{3$\sqrt{3}$ + 4$\sqrt{12}$ - 5$\sqrt{27}$}$
= $3\sqrt{3}$ + $4\sqrt{4.3}$ - 5$\sqrt{9.3}$
= $3\sqrt{3}$ + $8\sqrt{3}$ - $15\sqrt{3}$
= $-4$
$\text{b) B = }$ $\sqrt{32}$ - $\sqrt{50}$ + $\sqrt{18}$
= $4\sqrt{2}$ - $5\sqrt{2}$ + $3\sqrt{2}$
= $2\sqrt{2}$
$\text{c) C = }$ $\sqrt{72}$ + $\sqrt{4\dfrac{1}{2}}$ - $\sqrt{22}$ - $\sqrt{162}$
= $12\sqrt{\dfrac{1}{2}}$ + $2\sqrt{\dfrac{1}{2}}$ - $8\sqrt{\dfrac{1}{2}}$ - $18\sqrt{\dfrac{1}{2}}$
= $-12\sqrt{\dfrac{1}{2}}$ $\sqrt{3}$
$\text{d) D = }$ $\sqrt{(2 - \sqrt{3)}}$$^{2}$ + $\sqrt{4 - 2\sqrt{3}}$
= $\text{|2 - $\sqrt{3|}$}$ + $\text{|4 - 2$\sqrt{3|}$}$
= $\text{2 - $\sqrt{3}$}$ + $\sqrt{3}$ - 1
= $\text{1}$
#Ling