Ta có:
`(12017 - 1032017) . (22017 -1022017) . (32017 - 1012017).\ .... \.(1032017 - 12017)`
`=(12017 - 1032017) . (22017 -1022017) (32017 - 1012017).\....\.(512017-532017).(522017-522017).\... \.(1032017 - 12017)`
`=(12017 - 1032017) .(22017 -1022017) .(32017 - 1012017).\....\.(512017-532017).\ 0.\ ...\. (1032017 - 12017)`
`=0`
Vậy giá trị biểu thức đã cho bằng `0`
_______
Ta thấy rằng:
`1\ 2017 - 103 \ 2017` $\quad (1+103=104)$
`2\ 2017 - 102 \ 2017` $\quad (2+102=104)$
…
`52\ 2017 - 52 \ 2017 ` $\quad (52+52=104)$
….
`103\ 2017 - 1\ 2017` $\quad (103+1=104)$