Đáp án:
9) \(\left[ \begin{array}{l}
x = 3\\
x = - \dfrac{9}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
1)DK:x \ge 0\\
3x - 4\sqrt x - 3\sqrt x + 4 = 0\\
\to \sqrt x \left( {3\sqrt x - 4} \right) - \left( {3\sqrt x - 4} \right) = 0\\
\to \left( {3\sqrt x - 4} \right)\left( {\sqrt x - 1} \right) = 0\\
\to \left[ \begin{array}{l}
\sqrt x = \dfrac{4}{3}\\
\sqrt x = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{{16}}{9}\\
x = 1
\end{array} \right.\\
3)DK:\left[ \begin{array}{l}
x \ge \sqrt 6 \\
x \le - \sqrt 6
\end{array} \right.\\
{x^2} - 12 + \sqrt {{x^2} - 6} = 0\\
Đặt:\sqrt {{x^2} - 6} = t\left( {t \ge 0} \right)\\
\to {x^2} - 6 = {t^2}\\
\to {x^2} - 12 = {t^2} - 6\\
Pt \to {t^2} - 6 + t = 0\\
\to \left( {t - 2} \right)\left( {t + 3} \right) = 0\\
\to \left[ \begin{array}{l}
t = 2\\
t = - 3\left( l \right)
\end{array} \right.\\
\to \sqrt {{x^2} - 6} = 2\\
\to {x^2} - 6 = 4\\
\to {x^2} = 10\\
\to \left[ \begin{array}{l}
x = \sqrt {10} \\
x = - \sqrt {10}
\end{array} \right.\left( {TM} \right)\\
5)DK:x \ge - 2\\
\sqrt {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} = 2\left( {x - 2} \right)\left( {x - 1} \right)\\
\to \sqrt {\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)} - 2\left( {x - 2} \right)\left( {x - 1} \right) = 0\\
\to \sqrt {x + 2} \left( {\sqrt {{x^2} - 2x + 4} - 2\left( {x - 1} \right)\sqrt {x - 2} } \right) = 0\\
\to \left[ \begin{array}{l}
x + 2 = 0\\
\sqrt {{x^2} - 2x + 4} = 2\left( {x - 1} \right)\sqrt {x - 2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 2\\
{x^2} - 2x + 4 = 4\left( {{x^2} - 2x + 1} \right)\left( {x - 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 2\\
{x^2} - 2x + 4 = 4\left( {{x^3} - 2{x^2} - 2{x^2} + 4x + x - 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 2\\
4{x^3} - 17{x^2} + 22x - 12 = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = - 2\\
x = 2,558699778
\end{array} \right.\\
7)DK:{x^2} + 5x + 1 \ge 0 \to \left[ \begin{array}{l}
x \ge \dfrac{{ - 5 + \sqrt {21} }}{2}\\
x \le \dfrac{{ - 5 - \sqrt {21} }}{2}
\end{array} \right.\\
3\left( {{x^2} + 5x} \right) + 2\sqrt {{x^2} + 5x + 1} = 2\\
Đặt:\sqrt {{x^2} + 5x + 1} = t\left( {t \ge 0} \right)\\
\to {x^2} + 5x + 1 = {t^2}\\
\to {x^2} + 5x = {t^2} - 1\\
\to 3\left( {{t^2} - 1} \right) + 2t = 2\\
\to 3{t^2} + 2t - 5 = 0\\
\to \left[ \begin{array}{l}
t = 1\\
t = - \dfrac{5}{3}\left( l \right)
\end{array} \right.\\
\to \sqrt {{x^2} + 5x + 1} = 1\\
\to {x^2} + 5x + 1 = 1\\
\to {x^2} + 5x = 0\\
\to x\left( {x + 5} \right) = 0\\
\to \left[ \begin{array}{l}
x = 0\\
x = - 5
\end{array} \right.\left( {TM} \right)\\
9)2{x^2} + 3x + 3 = 5\sqrt {2{x^2} + 3x + 9} \\
Đặt:\sqrt {2{x^2} + 3x + 9} = t\left( {t \ge 0} \right)\\
\to 2{x^2} + 3x + 9 = {t^2}\\
\to 2{x^2} + 3x + 3 = {t^2} - 6\\
Pt \to {t^2} - 6 = 5t\\
\to \left( {t - 6} \right)\left( {t + 1} \right) = 0\\
\to \left[ \begin{array}{l}
t = 6\\
t = - 1\left( l \right)
\end{array} \right.\\
\to \sqrt {2{x^2} + 3x + 9} = 6\\
\to 2{x^2} + 3x + 9 = 36\\
\to \left( {x - 3} \right)\left( {2x + 9} \right) = 0\\
\to \left[ \begin{array}{l}
x = 3\\
x = - \dfrac{9}{2}
\end{array} \right.
\end{array}\)