Đáp án:
\(\begin{array}{l}
a)\,\,\,x = {\log _2}3.\\
b)\,\,\left[ \begin{array}{l}
m = - 1\\
m > 0\\
- 1 < m < 0
\end{array} \right.\\
c)\,\,\left[ \begin{array}{l}
m = - 1\\
m > 0
\end{array} \right.\\
d)\,\, - 1 < m < 0
\end{array}\)
Giải thích các bước giải:
\[\begin{array}{l}
{4^x} - {2^{x + 1}} = m\,\,\,\\
\Leftrightarrow {2^{2x}} - {2.2^x} - m = 0\,\left( * \right)\\
\,Dat\,\,\,t = {2^x}\,\,\,\left( {t > 0} \right)\\
\Rightarrow \left( * \right) \Leftrightarrow {t^2} - 2t - m = 0\,\,\,\,\left( 1 \right)\\
a)\,\,Giai\,\,pt\,\,vs\,\,\,m = 3.\\
Voi\,\,\,m = 3\,\,\, \Rightarrow \left( * \right) \Leftrightarrow {2^2}^x - {2.2^x} - 3 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{2^x} = 3\,\,\,\,\left( {tm} \right)\\
{2^x} = - 1\,\,\,\left( {ktm} \right)
\end{array} \right. \Leftrightarrow x = {\log _2}3.\\
b)\,\,\left( * \right)\,\,\,co\,\,\,nghiem\,\,\, \Leftrightarrow \left( 1 \right)\,\,\,\,co\,\,\,\,nghiem\,\,\,t > 0\\
\Leftrightarrow \left[ \begin{array}{l}
\left( 1 \right)\,\,\,co\,\,\,nghiem\,\,kep\,\,duong\\
\left( 1 \right)\,\,\,co\,\,\,nghiem\,\,\,trai\,\,\,dau\\
\left( 1 \right)\,\,\,co\,\,2\,\,nghiem\,\,\,duong\,\,\,phan\,\,biet
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' = 0\\
- \frac{b}{a} > 0\\
\frac{c}{a} > 0
\end{array} \right.\\
ac < 0\\
\left\{ \begin{array}{l}
\Delta ' > 0\\
- \frac{b}{a} > 0\\
\frac{c}{a} > 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
1 + m = 0\\
2 > 0\\
- m > 0
\end{array} \right.\\
- m < 0\\
\left\{ \begin{array}{l}
1 + m > 0\\
2 > 0\\
- m > 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
m = - 1\\
m < 0
\end{array} \right.\\
m > 0\\
\left\{ \begin{array}{l}
m > - 1\\
m < 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m = - 1\\
m > 0\\
- 1 < m < 0
\end{array} \right..\\
c)\,\,\,\left( * \right)\,\,\,co\,\,\,1\,\,\,\,nghiem\,\,\, \Leftrightarrow \left( 1 \right)\,\,\,co\,\,\,1\,\,\,nghiem\,\,\,duong\\
\Leftrightarrow \left[ \begin{array}{l}
\left( 1 \right)\,\,\,co\,\,\,nghiem\,\,kep\,\,duong\\
\left( 1 \right)\,\,\,\,co\,\,\,\,2\,\,\,nghiem\,\,\,trai\,\,dau
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
\Delta ' = 0\\
- \frac{b}{a} > 0\\
\frac{c}{a} > 0
\end{array} \right.\\
ac < 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
1 + m = 0\\
2 > 0\\
- m > 0
\end{array} \right.\\
- m < 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
m = - 1\\
m < 0
\end{array} \right.\\
m > 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m = - 1\\
m > 0
\end{array} \right..\\
d)\,\,\left( * \right)\,\,\,co\,\,\,2\,\,nghiem\,\,\,pb \Leftrightarrow \left( 1 \right)\,\,\,co\,\,2\,\,\,nghiem\,\,\,duong\,\,\,phan\,\,biet\\
\Leftrightarrow \left\{ \begin{array}{l}
\Delta ' > 0\\
- \frac{b}{a} > 0\\
\frac{c}{a} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
1 + m > 0\\
2 > 0\\
- m > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > - 1\\
m < 0
\end{array} \right. \Leftrightarrow - 1 < m < 0.
\end{array}\]