Giải thích các bước giải:
Ta có:
$B=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1$
$\to B=\dfrac{\sqrt{x}(x\sqrt{x}+1)}{x-\sqrt{x}+1}-(2\sqrt{x}+1)+1$
$\to B=\dfrac{\sqrt{x}((\sqrt{x})^3+1)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1$
$\to B=\dfrac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}-2\sqrt{x}$
$\to B=\sqrt{x}(\sqrt{x}+1)-2\sqrt{x}$
$\to B=x+\sqrt{x}-2\sqrt{x}$
$\to B=x-\sqrt{x}$