Đáp án: x=-5/3 ; y=5/2; z=-1
Giải thích các bước giải:
$\begin{array}{l}
\left| {3x + 5} \right| + {\left| {2y - 5} \right|^{1020}} + \left| {2z - x + \frac{1}{3}} \right| \le 0\\
Do:\left| {3x + 5} \right|,{\left| {2y - 5} \right|^{1020}},\left| {2z - x + \frac{1}{3}} \right| \ge 0\forall x,y,z\\
Nên:bpt \Leftrightarrow \left\{ \begin{array}{l}
\left| {3x + 5} \right| = 0\\
{\left| {2y - 5} \right|^{1020}} = 0\\
\left| {2z - x + \frac{1}{3}} \right| = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ - 5}}{3}\\
y = \frac{5}{2}\\
2z = x - \frac{1}{3} = \frac{{ - 5}}{3} - \frac{1}{3} = - 2
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x = \frac{{ - 5}}{3}\\
y = \frac{5}{2}\\
z = - 1
\end{array} \right.
\end{array}$