Đáp án:
$F{e_2}{(S{O_4})_3}.9{H_2}O$
Giải thích các bước giải:
PTHH:
$2MS + \left( {2 + \dfrac{n}{2}} \right){O_2}\xrightarrow{{{t^o}}}{M_2}{O_n} + 2S{O_2}$
$\begin{gathered} {M_2}{O_n} + n{H_2}S{O_4} \to {M_2}{(S{O_4})_n} + n{H_2}O \hfill \\ \end{gathered} $
Gọi a là số mol $MS$
${n_{{M_2}{O_n}}} = {n_{{M_2}{{(S{O_4})}_n}}} = \dfrac{a}{2};{n_{{H_2}S{O_4}}} = \dfrac{{an}}{2}$
$\begin{gathered} {m_{{M_2}{O_n}}} = \dfrac{a}{2}(2M + 16n);{m_{{M_2}{{(S{O_4})}_n}}} = \dfrac{a}{2}(2M + 96n) \hfill \\ {m_{dd{H_2}S{O_4}}} = \dfrac{{98.\dfrac{{an}}{2}}}{{36,75\% }} = 133,33an \hfill \\ \end{gathered} $
Bảo toàn khối lượng: ${m_{ddX}} = {m_{{M_2}{O_n}}} + {m_{dd{H_2}S{O_4}}}$ ⇒${m_{ddX}} = \dfrac{a}{2}(2M + 16n) + 133,33an = a(M + 141,33n)$
$\begin{gathered}
C{\% _{{M_2}{{(S{O_4})}_n}}} = \dfrac{{\dfrac{a}{2}(2M + 96n)}}{{a(M + 141,33n)}}.100\% = 41,67\% \hfill \\
\Leftrightarrow M + 48n = 0,4167(M + 141,33n) \hfill \\
\Rightarrow M = 18,67n \hfill \\
\Rightarrow \left\{ \begin{gathered}
n = 3 \hfill \\
M = 56 \hfill \\
\end{gathered} \right. \hfill \\
\end{gathered} $
M là $Fe$
$\begin{gathered}
{n_{FeS}} = \dfrac{{4,4}}{{88}} = 0,05mol \Rightarrow {n_{F{e_2}{O_3}}} = {n_{F{e_2}{{(S{O_4})}_3}}} = 0,025mol \hfill \\
{n_{{H_2}S{O_4}}} = 3{n_{F{e_2}{O_3}}} = 0,075mol \hfill \\
\Rightarrow {m_{F{e_2}{O_3}}} = 0,025.160 = 4g;{m_{F{e_2}{{(S{O_4})}_3}}} = 0,025.400 = 10g \hfill \\
{m_{dd{H_2}S{O_4}}} = \dfrac{{0,075.98}}{{36,75\% }} = 20g \hfill \\
{m_{ddX}} = {m_{F{e_2}{O_3}}} + {m_{dd{H_2}S{O_4}}} = 24g \hfill \\
\end{gathered} $
Gọi CTPT của Y là $F{e_2}{(S{O_4})_3}.n{H_2}O$
$\begin{gathered}
{m_{ddsau}} = {m_{ddX}} - {m_Y} = 24 - 5,62 = 18,38g \hfill \\
{m_{F{e_2}{{(S{O_4})}_3}sau}} = \dfrac{{{m_{ddsau}}.32,64}}{{100}} = 6g \hfill \\
\Rightarrow {m_{F{e_2}{{(S{O_4})}_3}(Y)}} = 10 - 6 = 4g \hfill \\
\Rightarrow {n_{F{e_2}{{(S{O_4})}_3}}} = 0,01mol \hfill \\
\Rightarrow {n_Y} = {n_{F{e_2}{{(S{O_4})}_3}}} = 0,01mol \hfill \\
\Rightarrow {M_Y} = \dfrac{{5,62}}{{0,01}} = 562 \Leftrightarrow 400 + 18n = 562 \hfill \\
\Rightarrow n = 9 \hfill \\
\end{gathered} $
CTPT của Y: $F{e_2}{(S{O_4})_3}.9{H_2}O$