Hệ quả: a ≡ b (mod m) <=> a - b ≡ 0 (mod m)
Tính chất:
- T/c phản xạ : a ≡ a (mod m)
- T/c bắc cầu: a ≡ b (mod m)
a ≡ c (mod m)
=> a ≡ c (mod m)
- T/c cộng trừ từng vế: a ≡ b (mod m)
c ≡ d (mod m)
=> a ± c = b ± d (mod m)
- T/c đối xứng: a ≡ b (mod m) => b ≡ a (mod m)
***
- T/c nhân: a ≡ b (mod m)
c ≡ d (mod m)
=> a.c = b.d (mod m)
* Hệ quả: a ≡ b (mod m) => a.c = b.c
a ≡ b (mod m) =>a² ≡ b² (mod m) => a^n ≡ b^n (mod m)
a ≡ b => a+k.m ≡ b (mod m)
- T/c cộng trừ: a ≡ b (mod m)
c ≡ d (mod m)
=> a±c = b±d (mod m)
* Hệ quả: a ≡ b (mod m) => a±c = b±d (mod m)
a + b ≡ c (mod m) =>$\left \{ {{a ≡ c-b (mod m)} \atop {b ≡ c-a (mod m)}} \right.$
a ≡ b (mod m) => a+k.m (mod m)