Giải thích các bước giải:
Bài 2:
a.$x^4-3x^2+2=0$
$\rightarrow x^4-2x^2-x^2+2=0$
$\rightarrow (x^2-2)x^2-(x^2-2)=0$
$\rightarrow (x^2-1)(x^2-2)=0$
$\rightarrow (x-1)(x+1)(x-\sqrt{2})(x+\sqrt{2})=0$
$\rightarrow x\in\{1,-1,\sqrt{2},-\sqrt{2}\}$
b.$m^2x+8=4x+4m$
$\rightarrow (m^2-4)x=4m-8$
$\rightarrow (m-2)(m+2)x=4(m-2)$
+)Nếu $m=2\rightarrow (2-2).(m+2)x=4.(2-2)\rightarrow $Vô số nghiệm
+)Nếu $m=-2\rightarrow (m-2).0.x=-16\rightarrow $Vô nghiệm
+)Nếu $m\ne 2,-2\rightarrow$ Phương trình có nghiệm duy nhất $x=\dfrac{4(m-2)}{(m-2)(m+2)}=\dfrac{4}{m+2}$