Giải thích các bước giải:
$\begin{array}{l}
C1:\\
y = \sqrt 3 \sin x + \cos x + 2\\
\Leftrightarrow \frac{y}{2} = \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x + 1\\
\Leftrightarrow \frac{y}{2} = \sin \left( {x + \frac{\pi }{6}} \right) + 1
\end{array}$
Mà $ - 1 \le \sin \left( {x + \frac{\pi }{6}} \right) \le 1$
$\begin{array}{l}
\Leftrightarrow 0 \le \sin \left( {x + \frac{\pi }{6}} \right) + 1 \le 2\\
\Leftrightarrow 0 \le \frac{y}{2} \le 2\\
\Leftrightarrow 0 \le y \le 4
\end{array}$
+) Nếu $y=4$
$ \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} \right) = 1 \Leftrightarrow x + \frac{\pi }{6} = \frac{\pi }{2} + k2\pi \Leftrightarrow x = \frac{\pi }{3} + k2\pi \left( {k \in Z} \right)$
$\to Maxy = 4 \Leftrightarrow x = \frac{\pi }{3} + k2\pi \left( {k \in Z} \right)$
+) Nếu $y=0$
$ \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} \right) = - 1 \Leftrightarrow x + \frac{\pi }{6} = - \frac{\pi }{2} + k2\pi \Leftrightarrow x = - \frac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)$
$ \Rightarrow Miny = 0 \Leftrightarrow x = - \frac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)$
Vậy
$Maxy = 4 \Leftrightarrow x = \frac{\pi }{3} + k2\pi \left( {k \in Z} \right)$
$Miny = 0 \Leftrightarrow x = - \frac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)$
C2:
Đường thẳng $\left( d \right):2x + y + 3 = 0$
Lấy điểm $A\left( { - 1, - 1} \right) \in \left( d \right)$
${T_{\overrightarrow v = \left( {5, - 1} \right)}}A = A' \Rightarrow A'\left( {4, - 2} \right)$
Và ${T_{\overrightarrow v = \left( {5, - 1} \right)}}\left( d \right) = \left( d \right)' \Rightarrow \left\{ \begin{array}{l}
A'\left( {4, - 2} \right) \in \left( d \right)'\\
\left( d \right)'//\left( d \right)
\end{array} \right.$
$\begin{array}{l}
\Rightarrow \left( d \right)':2\left( {x - 4} \right) + 1\left( {y + 2} \right) = 0\\
\Rightarrow \left( d \right)':2x + y - 6 = 0
\end{array}$
Vậy $\left( d \right)':2x + y - 6 = 0$