$a.2(x-y)(x+y)+(x+y)^2+(x-y)^2$
$=(x-y)^2+2.(x-y)(x+y)+(x+y)^2$
$=(x-y+x+y)^2$
$=(2x)^2$
$=4x^2$
$b.(x-y+z)^2+(z-y)^2+2(x-y+z)(y-z)$
$=(x-y+z)^2+(z-y)^2+(x-y+z)(y-z)+(x-y+z)(y-z)$
$=(x-y+z)^2+(x-y+z)(y-z)+(z-y)^2+(x-y+z)(y-z)$
$=(x-y+z)(x-y+z+y-z)+(z-y)^2-(x-y+z)(z-y)$
$=x(x-y+z)+(z-y)(z-y-x+y-z)$
$=x(x-y+z)+(z-y)(-x)$
$=x^2-xy+xz-xz+xy$
$=x^2$