Đáp án:
7,14 cm
Giải thích các bước giải:
Áp dụng công thức:
$ \begin{array}{l} \dfrac{pV}{T}=\dfrac{p'{{V}_{1}}}{{{T}_{1}}}=\dfrac{p'{{V}_{2}}}{{{T}_{2}}} \\ \Rightarrow \dfrac{p'({{V}_{2}}-{{V}_{1}})}{{{T}_{2}}-{{T}_{1}}}=\dfrac{p'({{V}_{2}}+{{V}_{1}})}{{{T}_{2}}+{{T}_{1}}} \\ \Rightarrow \Delta V=2{{V}_{0}}\dfrac{2\Delta T}{{{T}_{2}}+{{T}_{1}}} \\ \Rightarrow x=\dfrac{\Delta V}{2S}=\dfrac{{{V}_{0}}}{S}\dfrac{2\Delta T}{{{T}_{2}}+{{T}_{1}}}=\dfrac{195}{0,2}\dfrac{2.2}{273.2}=7,14cm \end{array} $