\[\begin{array}{l}
A\left( { - 2;\,\,1} \right)\\
5)\,\,\,Goi\,\,\,\Delta :\,\,\,y = ax + b\,\,\,\,\left( {a \ne 0} \right)\\
A \in \Delta \Rightarrow - 2a + b = 1 \Leftrightarrow b = 1 + 2a.\\
\Rightarrow \Delta :\,\,\,y = ax + 2a + 1\\
Goi\,\,\,Ox \cap \Delta = \left\{ B \right\} \Rightarrow B\left( { - \frac{{2a + 1}}{a};\,\,\,0} \right)\\
Oy \cap \Delta = \left\{ C \right\} \Rightarrow C\left( {0;\,\,2a + 1} \right).\\
\Delta OBC\,\,\,vuong\,\,\,can\,\,\,tai\,\,\,O \Rightarrow OB = OC\\
\Leftrightarrow \left| {{x_B}} \right| = \left| {{y_C}} \right| \Leftrightarrow \left| {\frac{{2a + 1}}{a}} \right| = \left| {2a + 1} \right|\\
\Leftrightarrow \left| {2a + 1} \right|\left( {\frac{1}{{\left| a \right|}} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
\left| {2a + 1} \right| = 0\\
\frac{1}{{\left| a \right|}} - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2a + 1 = 0\\
\left| a \right| = 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
a = - \frac{1}{2} \Rightarrow b = 0\\
a = 1 \Rightarrow b = 3\\
a = - 1 \Rightarrow b = - 1
\end{array} \right.\\
6)\,\,\,Goi\,\,\,\Delta :\,\,\,y = ax + b\,\,\,\,\left( {a \ne 0} \right)\\
A \in \Delta \Rightarrow - 2a + b = 1 \Leftrightarrow b = 1 + 2a.\\
\Rightarrow \Delta :\,\,\,y = ax + 2a + 1\\
Goi\,\,\,Ox \cap \Delta = \left\{ B \right\} \Rightarrow B\left( { - \frac{{2a + 1}}{a};\,\,\,0} \right)\\
Oy \cap \Delta = \left\{ C \right\} \Rightarrow C\left( {0;\,\,2a + 1} \right).\\
\left\{ \begin{array}{l}
{x_B} > 0\\
{y_C} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- \frac{{2a + 1}}{a} > 0\\
2a + 1 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
2a + 1 > 0\\
a < 0
\end{array} \right. \Leftrightarrow - \frac{1}{2} < a < 0.\\
{S_{BOC}} = 16 \Leftrightarrow \frac{1}{2}OB.OC = 16\\
\Leftrightarrow {x_B}.{y_C} = 32\\
\Leftrightarrow - \frac{{2a + 1}}{a}.\left( {2a + 1} \right) = 32\\
\Leftrightarrow {\left( {2a + 1} \right)^2} + 32a = 0\\
\Leftrightarrow 4{a^2} + 4a + 1 + 32a = 0\\
\Leftrightarrow 4{a^2} + 36a + 1 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
a = \frac{{ - 9 + 4\sqrt 5 }}{2}\,\,\left( {tm} \right)\\
a = \frac{{ - 9 - 4\sqrt 5 }}{2}\,\,\,\left( {ktm} \right)
\end{array} \right. \Rightarrow b = 2a + 1 = - 8 + 4\sqrt 5 .
\end{array}\]
Em kết luận phương trình đường thẳng delta nhé em.