Đáp án:
$\begin{array}{l}
a)3x\left( {5{x^2} - 2x - 1} \right)\\
= 15{x^3} - 6{x^2} - 3x\\
b)\\
\frac{{{x^2} - 2x + 1}}{{x - 1}} = \frac{{{{\left( {x - 1} \right)}^2}}}{{x - 1}} = x - 1\\
c)\frac{{{x^2} - x}}{{x - 1}} + \frac{{x - 1}}{{1 - x}}\\
= \frac{{x\left( {x - 1} \right)}}{{x - 1}} - \frac{{x - 1}}{{x - 1}}\\
= x - 1\\
d)\frac{{{x^2} - 10x + 25}}{{{x^2} - 5x}}:\frac{x}{{x - 5}}\\
= \frac{{{{\left( {x - 5} \right)}^2}}}{{x\left( {x - 5} \right)}}.\frac{{x - 5}}{x}\\
= \frac{{{{\left( {x - 5} \right)}^2}}}{{{x^2}}}
\end{array}$