Cho nửa đường tròn tâm 0 có đường kính AB. Lấy điểm C trên đoạn thẳng AO (C khác A, C khác O). Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn tại K. Gọi M là điểm bất kì trên cung KB (A khác K, M khác B). Đường thẳng CK cắt các đường thẳng AM, BM lần lượt tại H và D. Đường thẳng BH cắt nửa đường tròn tại điểm thứ hai N.
1)Chứng minh tứ giác ACMD là tứ giác nội tiếp.
2)Chứng minh CA.CB = CH.CD.
3) Chứng minh ba điểm A, N, D thẳng hàng và tiếp tuyến tại N của nửa đường tròn đi qua trung điểm của DH
4) Khi M di động trên cung KB, chứng minh đường thẳng MN luôn đi qua một điểm cố định.
A.
B.
C.
D.