Giải thích các bước giải:
Bài 1:
a/ $7\sqrt{\dfrac{1}{7}}+\dfrac{35}{6\sqrt{7}}-\dfrac{7}{3}.\sqrt{\dfrac{4}{7}}-\dfrac{1}{2}.\sqrt{63}$
$=\dfrac{7}{\sqrt{7}}+\dfrac{35}{6\sqrt{7}}-\dfrac{14}{3\sqrt{7}}-\dfrac{\sqrt{63}}{2}$
$=\dfrac{42+35-28-\sqrt{63}.3\sqrt{7}}{6\sqrt{7}}$
$=\dfrac{49-3\sqrt{63.7}}{6\sqrt{7}}$
$=\dfrac{49-3.\sqrt{441}}{6\sqrt{7}}$
$=\dfrac{49-3.21}{6\sqrt{7}}$
$=\dfrac{-14}{6\sqrt{7}}$
$=\dfrac{-7\sqrt{7}}{3.7}$
$=\dfrac{-7\sqrt{7}}{21}$
b/ $\dfrac{15}{\sqrt{5}}-6\sqrt{\dfrac{5}{9}}+5\sqrt{\dfrac{1}{5}}-\sqrt{80}$
$=\dfrac{15}{\sqrt{5}}-\dfrac{6\sqrt{5}}{3}+\dfrac{5}{\sqrt{5}}-\sqrt{80}$
$=\dfrac{45-30+15-3\sqrt{400}}{3\sqrt{5}}$
$=\dfrac{45-30+15-3.20}{3\sqrt{5}}$
$=\dfrac{-30}{3\sqrt{5}}$
$=\dfrac{-10}{\sqrt{5}}$
$=\dfrac{-10\sqrt{5}}{5}$
Bài 2:
a/ $A=\dfrac{3}{\sqrt{3}}-\dfrac{2}{\sqrt{3}+1}+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}$
$⇔ A=\dfrac{3(\sqrt{3}-1)(\sqrt{3}+1)-2\sqrt{3}(\sqrt{3}-1)+(3-\sqrt{3}).\sqrt{3}.(\sqrt{3}+1)}{\sqrt{3}(\sqrt{3}-1)(\sqrt{3}+1)}$
$⇔ A=\dfrac{3(3-1)-2.3+2\sqrt{3}+(3-\sqrt{3})(3+\sqrt{3})}{\sqrt{3}(3-1)}$
$⇔ A=\dfrac{3.2-2.3+2\sqrt{3}+9-3}{2\sqrt{3}}$
$⇔ A=\dfrac{6+2\sqrt{3}}{2\sqrt{3}}$
$⇔ A=\dfrac{3+\sqrt{3}}{\sqrt{3}}$
$⇔ A=\dfrac{\sqrt{3}(\sqrt{3}+1}{\sqrt{3}}$
$⇔ A=\sqrt{3}+1$
b/ $B=\dfrac{5}{\sqrt{5}}-\dfrac{4}{\sqrt{5}+1}+\dfrac{5-\sqrt{5}}{\sqrt{5}-1}$
$⇔ B=\dfrac{5(\sqrt{5}-1)(\sqrt{5}+1)-4\sqrt{5}(\sqrt{5}-1)+(5-\sqrt{5}).\sqrt{5}.(\sqrt{5}+1}{\sqrt{5}(\sqrt{5}-1)(\sqrt{5}+1)}$
$⇔ B=\dfrac{5.(5-1)-4.5+4\sqrt{5}+(5-\sqrt{5}).(5+\sqrt{5})}{\sqrt{5}(5-1)}$
$⇔ B=\dfrac{5.4-4.5+4\sqrt{5}+25-5}{4\sqrt{5}}$
$⇔ B=\dfrac{20+4\sqrt{5}}{4\sqrt{5}}$
$⇔ B=\dfrac{5+\sqrt{5}}{\sqrt{5}}$
$⇔ B=\dfrac{\sqrt{5}(\sqrt{5}+1)}{\sqrt{5}}$
$⇔ B=\sqrt{5}+1$
c/ $C=\dfrac{6}{\sqrt{6}}-\dfrac{5}{\sqrt{6}+1}+\dfrac{6-\sqrt{6}}{\sqrt{6}-1}$
$⇔ C=\dfrac{6(\sqrt{6}-1)(\sqrt{6}+1)-5\sqrt{6}(\sqrt{6}-1)+(6-\sqrt{6}).\sqrt{6}(\sqrt{6}+1)}{\sqrt{6}(\sqrt{6}-1)(\sqrt{6}+1)}$
$⇔ C=\dfrac{6.(6-1)-5.6+5\sqrt{6}+(6-\sqrt{6})(6+\sqrt{6})}{\sqrt{6}(6-1)}$
$⇔ C=\dfrac{6.5-5.6+5\sqrt{6}+36-6}{5\sqrt{6}}$
$⇔ C=\dfrac{30+5\sqrt{6}}{5\sqrt{6}}$
$⇔ C=\dfrac{6+\sqrt{6}}{\sqrt{6}}$
$⇔ C=\dfrac{\sqrt{6}(\sqrt{6}+1)}{\sqrt{6}}$
$⇔ C=\sqrt{6}+1$
Chúc bạn học tốt !!!