Đáp án:`x+y=0`
Còn cái chứng minh `x+sqrt{x^2+2011} ne 0` cũng khá dễ ta giả sử:
`x+sqrt{x^2+2011}=0`
`<=>-x=sqrt{x^2+2011}`
`đk:x<=0`
`<=>x^2=x^2+2011`
`<=>0=2011` vô lý.
`=>` Điều giả sử sai.
`=>x+sqrt{x^2+2011} ne 0`
Tương tự `y+sqrt{y^2+2011} ne 0`.
Giải thích các bước giải:
Ta có:
`(x+sqrt{x^2+2011})(sqrt{x^2+2011}-x)`
`=x^2+2011-x^2=2011`
Mà `(x+sqrt{x^2+2011})(y+sqrt{y^2+2011})=2011`
`=>(x+sqrt{x^2+2011})(sqrt{x^2+2011}-x)=(x+sqrt{x^2+2011}))(y+sqrt{y^2+2011})(1)`
`<=>(x+sqrt{x^2+2011})[sqrt{x^2+2011}-x-(y+sqrt{y^2+2011})]=0`
`<=>[sqrt{x^2+2011}-x-(y+sqrt{y^2+2011})]=0` do `x+sqrt{x^2+2011} ne 0`
`<=>sqrt{x^2+2011}-x=y+sqrt{y^2+2011}`
`<=>sqrt{x^2+2011}-sqrt{y^2+2011}=x+y(**)`
Tương tự như (1) ta có:
`(y+sqrt{y^2+2011})(sqrt{y^2+2011}-y)=(x+sqrt{x^2+2011})(y+sqrt{y^2+2011})`
`<=>(y+sqrt{y^2+2011})[sqrt{y^2+2011}-y-(x+sqrt{x^2+2011})]=0`
`<=>[sqrt{y^2+2011}-y-(x+sqrt{x^2+2011})]=0` do `y+sqrt{y^2+2011} ne 0`
`<=>sqrt{y^2+2011}-y=x+sqrt{x^2+2011}`
`<=>x+y=sqrt{y^2+2011}-sqrt{x^2+2011}(** **)`
Cộng từng vế `(**),(** **)` ta có:
`2(x+y)=sqrt{x^2+2011}-sqrt{y^2+2011}+sqrt{y^2+2011}-sqrt{x^2+2011}`
`<=>2(x+y)=0`
`<=>x+y=0`
Vậy với `(x+sqrt{x^2+2011})(y+sqrt{y^2+2011})=2011` thì `x+y=0`.