$\displaystyle \begin{array}{{>{\displaystyle}l}} AB=\sqrt{( 3--2)^{2} +( 5-3)^{2}} =\sqrt{29}\\ AC=\sqrt{( 5--2)^{2} +( -2-3)^{2}} =\sqrt{74}\\ BC=\sqrt{( 5-3)^{2} +( -2-5)^{2}} =\sqrt{53}\\ \overrightarrow{AB} =( 5;2)\\ \overrightarrow{AC} =( 7;-5)\\ cosA=cos(\overrightarrow{AB} ,\overrightarrow{AC}) =\frac{\overrightarrow{AB} .\overrightarrow{AC}}{|\overrightarrow{AB} ||\overrightarrow{AC} |} =\frac{25}{\sqrt{29} .\sqrt{74}}\\ \Rightarrow A\approx 57^{o}\\ S_{ABC} =\frac{1}{2} AB.AC.sinA\approx 19,43\\ AB\ đi\ qua\ A( -2;3) \ nhận\ \overrightarrow{AB} =( 5;2) \ là\ vtpt\\ AB:\{_{y=3+2t}^{x=-2+5t}\\ hay\ AB:\frac{x+2}{5} =\frac{y-3}{2}\\ AB:2x-5y+19=0 \end{array}$