Cho \(\frac{{3z - 4y}}{5} = \frac{{5y - 3x}}{4} = \frac{{4x - 5z}}{3}\) và \({x^2} - {z^2} = 36\). Hãy tìm \(x,y,z\).
A.\(\left( {x;y;z} \right) \in \left\{ {\left( {10;6;8} \right),\left( { - 10; - 6; - 8} \right)} \right\}\).
B.\(\left( {x;y;z} \right) \in \left\{ {\left( {12;6;8} \right),\left( { - 12; - 6; - 8} \right)} \right\}\).
C.\(\left( {x;y;z} \right) \in \left\{ {\left( {10;9;8} \right),\left( { - 10; - 9; - 8} \right)} \right\}\).
D.\(\left( {x;y;z} \right) \in \left\{ {\left( {10;6;5} \right),\left( { - 10; - 6; - 5} \right)} \right\}\).

Các câu hỏi liên quan